Appendix 8.1.2: Indicators for High Arctic tundra
Table of contents
General methods	2
1	Indicator: Maximum vegetation productivity	4
2	Indicator: Start of growing season	6
3	Indicator: Maximum vegetation productivity versus Svalbard reindeer	8
4	Indicator: Maximum vegetation productivity versus geese	12
5	Indicator: Herbivorous vertebrates versus Arctic fox	15
6	Indicator: Herbivorous vertebrates	20
7	Indicator: Pink footed goose abundance	25
8	Indicator: Barnacle goose abundance	27
9	Indicator: Svalbard reindeer abundance	29
10	Indicator: Svalbard reindeer mortality rate	32
11	Indicator: Svalbard reindeer calf rate	34
12	Indicator: Arctic fox abundance	35
13	Indicator: Bioclimatic subzones	36
14	Indicator: Wilderness areas	39
15	Indicator: Svalbard rock ptarmigan breeding abundance	41
16	Indicator: Days with extreme cold	42
17	Indicator: Winter melt days	45
18	Indicator: Degree days	48
19	Indicator: Growing degree days	51
20	Indicator: Annual mean temperature	54
21	Indicator: July temperature	57
22	Indicator: Annual precipitation	60
23	Indicator: Permafrost	63
24	Indicator: Snow cover duration	65
References	68



[bookmark: _Hlk61241060][bookmark: _Hlk64277397][bookmark: _Hlk54265832][bookmark: _Toc64282327]General methods
[bookmark: _Hlk63870517]This section describes methods for how indicator values are calculated. We describe the overall analytical framework used to estimate rates of change in abiotic indicators and indicators based on time-series (see Williams et al. 2021 for an example). The appendix includes graphical representations of all indicator values and background data for these values, as well as supplementary methods for estimating indicator values where required. All statistical analyses were conducted in R version 1.2.5042 (R Core Team 2020).
[bookmark: _Toc63804091]Abiotic indicators (climate) — estimation of rates of change after the reference period 1961–1990
To estimate linear rates of change, relative to the climatic reference period 1961–1990, a two-step bootstrap has been used: 1) Non-parametric bootstrapping data for the first 30 years (1961–1990) as basis for estimating uncertainty around the mean for the reference period, 2) bootstrapping of data for all remaining years after the climatic reference period (1991–present) used to fit a linear regression model with the intercept given by the bootstrapped mean for the reference period. We also fitted segmented models with trends in both the reference period and the most recent period (1991 onwards) in case changes started before 1990. However, not all abiotic indicators can be estimated based on linear relationships. For some indicators, which have linear rates of change on a log scale and Poisson distributions or a variance proportional to the mean (for instance counts such as the number of days), log-linear models were used, using quasi-likelihood methods in case of overdispersion. The difference between this approach and the default linear model is that the average for the reference period 1961–1990 was included as an offset in a generalized linear model (glm function). See Fig. 1 for details on how to interpret results.
[image: ][image: cid:image001.jpg@01D7015D.5D95E590]
[bookmark: _Toc63804092]Figure 1. Example of how rates of change are estimated for the time-series for abiotic indicators (here illustrated by the indicators Snow cover duration Low Arctic and July mean temperature High Arctic). The black lines correspond to estimating the mean (without trend) in the reference period 1961–1990, followed by a trend for 1991-present (given here as a percentage as the model is fitted on a log-scale). The grey area is the 95 % confidence interval for the predicted mean value, and the dotted red line corresponds to the 95 % confidence limit for a single year (i.e. when the trend line for 1991-present crosses the dotted red line, it means that the average value of the indicator would have been considered as extreme in the reference period). The blue lines correspond to a segmented regression with trends in both the reference (1961–1990) and 1991-present periods (and with the latter rate of change expressed as «without ref.» in figure). When there is no trend before 1990 (Snow cover duration), using the “no–trend” model (black line) is adequate, but using the trends models for both periods should be preferred for July mean temperature (blue line). Mildir: Figuren blir endret slik at resolusjonen blir lik.
Other indicators — estimation of rates of change in time-series
To estimate linear rates of change, regression models with different structure for the residuals were used. The best fitting model was chosen based on Akaike Information Criterion (AIC). The possible models included in the model selection were: 1) AR0, a standard linear regression with independent residuals, 2) AR1, a 1st order autoregressive model, 3) AR2, a 2nd order autoregressive model, 4) AR3, a 3rd order autoregressive model, 5) ARMA11, a 1st order autoregressive model with a 1st order moving average. Models were estimated using the function gls() in the nlme library (Pinheiro et al. 2020) in R. The predictions based on the best AIC selected model were calculated using the function predictSE.gls() in the AICmodavg library (Mazerolle 2020) in R. The REML method was used for the estimates, except in cases where the model failed to converge, in which case the ML method was used. In cases where the model was based on transformed data (log for counts or logit for proportions), back transformed predicted values are shown (see Fig. 2 for details). R² was calculated as the squared correlation between the predicted and the observed values, and 95 % confidence intervals of regression coefficients were estimated using the function intervals() in the nlme library (Pinheiro et al. 2020). For time series with a known AR-structure, for instance small rodent abundance, AR2-models were used by default (Bjørnstad et al. 1995, Henden et al. 2009). The best (AIC selected) model for each individual indicator is indicated on the figures of indicator values and background data.
[image: ]
Figure 2. Generic example of how rates of change are described and estimated for the time-series for biotic indicators. The rate of change, beta, is given with 95% confidence intervals (CI). R2 is the percentage of variance of the observed time-series explained by the fitted model. The structure of the best model is specified (e.g. AR2 for indicators with cyclic behaviour).
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[bookmark: _Toc64282328]Indicator: Maximum vegetation productivity
Ecosystem characteristic: Primary productivity
Supplementary metadata
Not relevant.
Supplementary methods
Maximum vegetation productivity is calculated based on MODIS EVI 16-day composites (product MOD13Q1). We have used data from all 16-day periods throughout the growing season (day 65–day 289) for the years 2000-2019. Pixels that can be assumed not to contain vegetated ground (EVI < 0.1) were removed. Each pixel was then fitted to a dual logistic function (Beck et al. 2006, Tveraa et al. 2013). For each pixel, maximum productivity in a given year is expressed as the highest EVI value estimated from this function throughout the growing season. Changes in maximum productivity over time are estimated for each pixel based on a simple linear model with maximum vegetation productivity as response and year as predictor.
Plots of indicator values 
[image: ]
Figure A.1.1. The rate of change in maximum vegetation productivity. The figure shows the distribution of significant (black columns) and non-significant (grey columns) rates of change from a linear model with maximum productivity (EVI) as response variable and year (2000-2019) as a predictor. The model is run for each pixel in the three bioclimatic subzones (A, B and C) in Svalbard. Positive rates of change indicate an increasing vegetation productivity over time (e.g. ‘greening’), while negative rates of change indicate a decreasing vegetation productivity (e.g. ‘browning’). Almost all significant changes in the three bioclimatic subzones are towards increasing productivity (e.g. a greening trend).
[image: ][image: ]
Figure A.1.2. A map of the spatial distribution of areas in Svalbard archipelago (left) and Nordenskiöld Land (right) with positive (‘greening’) and negative (‘browning’) rates of change in maximum vegetation productivity over the years 2000-2019. 
Background data and supplementary analysis
Not relevant.
Recommendations for further development of the indicator
The indicator describes the linear trend in maximum vegetation productivity. This is a simplified model that may be inappropriate, especially when changes in productivity are due to threshold effects. Future improvements of this indicator should include an evaluation of the validity of a linear approximation. Further, it will be appropriate to supplement the underlying data currently being used (MODIS) with Sentinel data, which have higher resolution, but which are currently available for only a few growing seasons (2015-2019). 

[bookmark: _Toc64282329]Indicator: Start of growing season
[bookmark: _Hlk53571374]Ecosystem characteristic: Primary productivity
Supplementary metadata
Not relevant.
Supplementary methods
[bookmark: _Hlk55276347]Start of growing season is calculated based on MODIS EVI 16-day composites (product MOD13Q1). We have used data from all 16-day periods throughout the growing season (day 65 – day 289) for the years 2000-2019. Pixels that can be assumed not to contain vegetated ground (EVI < 0.1) were removed. Each pixel was then fitted to a dual logistic function (Beck et al. 2006, Tveraa et al. 2013). For each pixel, the start of the growing season in a given year is expressed as the day (i.e.no days after 1 January) when EVI reaches 50 % of maximum EVI (denoted ‘spring inflection point’ in the double logistic function). Changes in the start of the growing season over time are estimated for each pixel based on a simple linear model with the start of the growing season as response and year as a predictor.
Plots of indicator values 
[image: ]
Figure A.2.1. The rate of change in start of growing season. The figure shows the distribution of significant (black columns) and non-significant (grey columns) rates of change from a linear model with start of growing season (day of year) as response variable and year (2000-2019) as a predictor. The model is run for each pixel in the three bioclimatic subzones (A, B, and C) in Svalbard. Positive rates of change indicate a later start of growing season over time, while negative rates of change indicate an earlier start of growing season. For all three bioclimatic subzones almost all significant rates of change are negative, which indicates a significant earlier start of the growing season. 
 [image: ][image: ]
Figure A.2.2. Map of the spatial distribution of areas in Svalbard archipelago (left) and Nordenskiöld Land (right) with positive (‘later’’) and negative (‘earlier’) rates of change in start of growing season over the years 2000-2019. 
Background data and supplementary analysis
Not relevant.
Recommendations for further development of the indicator
The indicator describes the linear trend in the timing of the start of the growing season. This is a simplified model that need further development. Future improvements of this indicator should include an evaluation of the validity of a linear approximation. Further, it will be appropriate to supplement the underlying data currently being used (MODIS) with Sentinel data, which have higher resolution, but which are currently available for only a few growing seasons (2015-2019).

[bookmark: _Toc64282330]Indicator: Maximum vegetation productivity versus Svalbard reindeer
[bookmark: _Hlk53571679]Ecosystem characteristic: Biomass distribution among trophic levels 
Supplementary metadata
Not relevant.
Supplementary methods
Due to the lack of field data concerning plant growth forms in High Arctic tundra, this indicator uses the same satellite-based estimates of plant productivity as the indicator Maximum vegetation productivity as a proxy for plant biomass. Average maximum vegetation productivity is calculated for the total land area within the census areas for Svalbard reindeer, namely Adventdalen and Brøggerhalvøya (Fig. A.3.1). Only areas with altitude below 250 m (Adventdalen) and 200 m (Brøggerhalvøya) are included. Log-ratios are calculated as log(maximum vegetation productivity/total number of reindeer) for each of the areas Adventdalen and Brøggerhalvøya during the period for which data are available for both plants and reindeer (2000-2019). Rates of change in all data sets are calculated with AR models as described in the general methods and are shown ±2SE. The most suitable model based on AIC is indicated on each figure.
Plots of indicator values 
 [image: ]
Figure A.3.1. Log-ratio for maximum vegetation productivity and Svalbard reindeer abundance in Adventdalen (Ad) and Brøggerhalvøya (Br) from 2000-2019. Rates of change are shown with ±2SE (shaded area)

Background data and supplementary analysis

[image: ]
Figure A.3.2. Mean maximum vegetation productivity for Adventdalen and Brøggerhalvøya in the years 2000-2019 with 95 % confidence intervals (dark grey). The study areas cover all land below 250 m.a.s.l. (Adventdalen og Nordenskiöld Land) and 200 m.a.s.l (Brøggerhalvøya). Rates of change are shown with ±2SE (shaded area).
	

[bookmark: _Hlk63427007]Figure A.3.3. Abundance of Svalbard reindeer in Adventdalen, Reindalen and Brøggerhalvøya from 2000-2020. Note that abundance data from Reindalen is based on a three-year average. Rate of change are shown with ±2SE (shaded area).
Recommendations for further development of the indicator
Due to the lack of field data concerning plant growth forms, this indicator will continue to use satellite-based estimates of plant productivity. This is not an ideal basis for assessment of changes in plant biomass conditions. We therefore recommend development of a field-based indicator of plant biomass/plant growth forms and let this provide the underlying data for the indicators of biomass relationships between plants and herbivores. For Svalbard reindeer, there is a need to refine the indicator towards greater geographic representativity. The Governor of Svalbard conducts annual reindeer censuses from helicopter in several regions; these data could potentially be included to strengthen the spatial representativity of the indicator, but methods and data collection need quality assurance before use. However, questions have been raised concerning whether the method employed is sufficiently reliable to allow data comparison over time, and this issue must be assessed before the data can be considered for inclusion. 

[bookmark: _Hlk54267545][bookmark: _Toc64282331]Indicator: Maximum vegetation productivity versus geese
Ecosystem characteristic: Biomass distribution among trophic levels
Supplementary metadata
Not relevant.
Supplementary methods
[bookmark: _Hlk54955567]Due to the lack of data collected in the field concerning plant growth forms in High Arctic tundra, this indicator uses the same satellite-based estimates of plant productivity as the Maximum vegetation productivity indicator as a proxy for plant biomass. The barnacle goose and pink footed goose are widely distributed on the west coast of Svalbard (https://goosemap.nina.no/Kart-og-data/Kart), and although some of the breeding colonies are well studied (Black et al. 2007), relatively little is known about the detailed spatial distribution. For plant productivity, we have therefore chosen to use the average for all of Nordenskiöld Land (Fig A.4.1). Only areas below 250 m elevation are included since geese primarily forage below this level (Pedersen et al. 2013). Log-ratios between plant growth forms and geese are calculated as log(average maximum vegetation productivity in Nordenskiöld Land/estimated number of geese from counts in overwintering areas). Ratios are calculated separately for plant growth forms vs. pink footed goose and for plant growth forms vs barnacle goose. For these calculations we assume that an increase in the whole population of either barnacle or pink footed goose is reflected in the abundance of geese on Nordenskiöld Land. Rates of change in all data sets are calculated with AR models as described in the general methods and are shown ±2SE. The most suitable model based on AIC is indicated on each individual diagram. 
Plots of indicator values 
	

Figure A.4.1. Log-ratio of plant productivity and goose population numbers in Nordenskiöld Land. The figure shows the log-ratio between average maximum EVI and total barnacle goose population (solid line) and between average maximum EVI and median estimated population numbers for pink footed goose (dashed line) estimated for the years (2000-2019; Johnson et al. 2020). Rates of change (straight line) are shown ±2SE (shaded area).

Background data and supplementary analysis
	

Figure A.4.2. Mean maximum vegetation productivity in Nordenskiöld Land (area below 250 m.a.s.l.) for the years 2000-2019 (solid line) with 95 % confidence intervals (dark grey). Rates of change are shown with ±2SE (shaded area).

	

Figure A.4.3. Population sizes of barnacle geese (solid line) and pink footed geese (dashed line). The figure shows the estimated number of geese based on population counts in winter for barnacle goose  and estimated median number of pink footed geese in spring (May) based on an integrated population model (Johnson et al. 2020). Rates of change are shown with ±2SE (shaded area).
Recommendations for further development of the indicator
Due to the lack of data collected in the field concerning plant growth forms, this indicator will continue to use satellite-based estimates of plant productivity, although, this is not an appropriate basis for assessment of changes in biomass conditions. The recommendation is to also phase in a field-based indicator of plant biomass/plant growth forms and let this provide the underlying data for the indicators of biomass relationships between plants and herbivores. Concerning geese, there is a need to refine the indicator towards better geographic representativity. See also the recommendations concerning the indicators pink footed goose abundance and barnacle goose abundance.

[bookmark: _Hlk54686172][bookmark: _Toc64282332]Indicator: Herbivorous vertebrates versus Arctic fox
Ecosystem characteristic: Biomass distribution among trophic levels
Supplementary metadata
Not relevant.
Supplementary methods
The log-ratio between Svalbard reindeer and Arctic fox is calculated as log(total number of Svalbard reindeer/percentage of known Arctic fox dens with a litter) for each of the areas Adventdalen (for Arctic fox, Adventdalen also includes Sassendalen) and Brøggerhalvøya (for Arctic fox, Brøggerhalvøya also includes Kongsfjorden). The ratio is calculated for the years 1997-2019 (Adventdalen) and 1993-2019 (Brøggerhalvøya), when data on both species are available. To handle zero values in the data set for Arctic fox, a small constant (1) is added throughout the Arctic fox time-series. The log-ratio between geese and Arctic fox uses the estimated number of barnacle geese and pink footed geese based on estimates of the whole population in the non-breeding season assuming that numbers (and changes in numbers) are representative figures for Adventdalen/Sassendalen and Brøggerhalvøya/Kongsfjorden, and the percentage of known Arctic fox dens with a litter as an average of the areas Adventdalen/Sassendalen and Brøggerhalvøya/Kongsfjorden. The ratio is calculated as log(number of barnacle geese/percentage of Arctic fox dens with litter) and log(number of pink footed geese/percentage of Arctic fox dens with litter) for the years 1993-2019. Rates of change in all data sets are calculated with AR models as described in the general methods and are shown ±2SE. The most suitable model based on AIC is indicated on each individual diagram.
Plots of indicator values 

Figure A.5.1. Log-ratio of Svalbard reindeer and Arctic fox in Svalbard. The solid line shows the log-ratio between the total number of Svalbard reindeer in Adventdalen and the percentage of Arctic fox dens with active litters in Adventdalen/Sassendalen for the years 1997-2019. The dashed line shows the log-ratio between the total number of Svalbard reindeer in Brøggerhalvøya and the percentage of Arctic fox dens with active litters in Brøggerhalvøya/Kongsfjorden for the years 1993-2019. Rates of change are shown with ±2SE (shaded area).
Figure A.5.2. Log-ratio between goose numbers and Arctic fox in Svalbard. The log-ratios were calculated using the estimated number of barnacle geese from population counts in wintering areas and the percentage of Arctic fox dens with active litters (solid line), and the estimated median number of pink footed geese and the percentage of fox dens with active litters (dashed line) in 1993-2019. Average percentage of Arctic fox dens with active litters for Adventdalen/Sassendalen and Brøggerhalvøya/Kongsfjorden are used. Rates of change are shown with ±2SE (shaded area).

Background data and supplementary analysis
	

Figure A.5.3. The population sizes of barnacle geese (solid line) and pink footed geese (dashed line) in Svalbard from 2000-2019. The figure shows the estimated number of geese based on population counts in wintering areas for barnacle goose and estimated number of geese in spring areas using an integrated population model of pink footed goose. Rates of change are shown with ±2SE (shaded area).
	

Figure A.5.4. Population sizes of Svalbard reindeer in Adventdalen, Reindalen and Brøggerhalvøya from 2000-2020. Note that abundance data from Reindalen is based on a three-year average. Rates of change are shown with ±2SE (shaded area).

Figure A.5.5. Arctic fox den monitoring in Svalbard. The figure shows the percentage of all known dens with active litters in Adventdalen/Sassendalen (solid line) and Brøggerhalvøya/Kongsfjorden (dashed line). Data exist for the period 1993-2019 for Brøggerhalvøya/Kongsfjorden, and 1997-2019 for Adventdalen/Sassendalen. Rates of change are shown with ±2SE (shaded area).
Recommendations for further development of the indicator
See recommendations for the indicators related to each individual species (Arctic fox, pink footed goose, barnacle goose and Svalbard reindeer).

[bookmark: _Toc64282333]Indicator: Herbivorous vertebrates
Ecosystem characteristic: Functional groups within trophic levels
Supplementary metadata
Not relevant.
Supplementary methods
The log-ratio between Svalbard rock ptarmigan and geese is calculated as log(predicted numeric density of male ptarmigan per km2 / population size of geese estimated in the non-breeding season). Ratios are calculated separately for each goose species (pink footed goose and barnacle goose). Rates of change in all data sets are calculated with AR models as described in the general methods and are shown ±2SE. The most suitable model based on AIC is indicated on each individual diagram.
Plots of indicator values 
	

Figure A.6.1. Log-ratio between the abundance of Svalbard rock ptarmigan and barnacle goose (solid line) and between Svalbard rock ptarmigan and pink footed goose (dashed line) from 2000-2019. Rates of change are shown with ±2SE (shaded area).
	

Figure A.6.2. Log-ratio between the abundance of Svalbard rock ptarmigan and Svalbard reindeer from 2000-2019. Rates of change are shown with ±2SE (shaded area).
Background data and supplementary analysis
	

Figure A.6.3. Population sizes of barnacle geese (solid line) and pink footed geese (dashed line) from 2000-2019. The figure shows the estimated number of geese based on population counts in winter for barnacle goose  and estimated median number of pink footed geese in spring (May) based on an integrated population model (Johnson et al. 2020). Rates of change are shown with ±2SE (shaded area).

Figure A.6.4. Svalbard rock ptarmigan abundance. The figure shows predicted density in the number of males/km2 (incl. 95 % confidence intervals). Rates of change are shown with ±2SE (shaded area).


	

Figure A.6.5. The population size of Svalbard reindeer in Adventdalen, Reindalen and Brøggerhalvøya from 2000-2020 Note that abundance data from Reindalen is based on a three-year average. Rates of change are shown with ±2SE (shaded area).
Recommendations for further development of the indicator
In the short term, phenomena linked to this indicator can be strengthened by a more detailed analysis of co-variations between the different herbivores (Hansen et al. 2013). For example, the state of Svalbard reindeer and Svalbard rock ptarmigan can be expected to show parallel variations controlled by variations in winter climate. See also recommendations for the indicators for each individual species (pink footed goose, barnacle goose, Svalbard rock ptarmigan, and Svalbard reindeer).

[bookmark: _Hlk54266864][bookmark: _Toc64282334]Indicator: Pink footed goose abundance
[bookmark: _Hlk53573984]Ecosystem characteristic: Functionally important species and biophysical structures
Supplementary metadata
Not relevant. 
Supplementary methods
Rates of change in all data sets are calculated with AR models as described in the general methods and are shown ±2SE. The most suitable model based on AIC is indicated on each individual diagram.
Plots of indicator values 
	

Figure A.7.1. Estimated pink footed goose abundance on Svalbard. The figure shows the estimated median number of geese in spring areas (May) based on an integrated population model (Johnson et al. 2020). The estimates from the integrated population model are calculated for the period 1992-2020. Rates of change are shown with ±2SE (shaded area).
Background data and supplementary analysis
Not relevant. 
Recommendations for further development of the indicator
In the short term this indicator is considered appropriately formulated. Over time, it is recommended that the indicator is strengthened with local population data (Wisz et al. 2008) to obtain better understanding of what drives population trends in the breeding areas vs. wintering/staging areas. The total population of pink footed goose has developed without obvious signs of density limitations for the past 4-5 decades. Some old colonies in Svalbard, e.g., Sassendalen, show a tendency toward stabilization of the number of nests, whereas more recently established colonies (such as Semmeldalen and parts of Adventdalen) still appear to be growing. With continued global warming, it is expected that new colonies could be established in northern and eastern parts of Svalbard (Jensen et al. 2008). To gain better understanding of distribution trends, and to develop model-based prognoses of future population trends, it will be necessary to undertake extensive counting at various low-elevation sites in Svalbard, at regular intervals.

[bookmark: _Toc64282335]Indicator: Barnacle goose abundance
Ecosystem characteristic: Functionally important species and biophysical structures
Supplementary metadata
Not relevant.
Supplementary methods
Rates of change in all data sets are calculated with AR models as described in the general methods and are shown ±2SE. The most suitable model based on AIC is indicated on each individual diagram.
Plots of indicator values 
	

Figure A.8.1. Barnacle goose abundance on Svalbard from 1989-2019. The figure shows estimated number of geese from population counts in wintering areas (black solid line). The years on the x-axis denote the start of the season (i.e. 2010 means winter season 2010/2011). Note that the population estimates for 2020 and subsequent rates of change are likely lower due to fewer counts (COVID-19 and weather-related causes). Rates of change excluding the season 2019/2020 is 0.04 [0.032; 0.051]. Rates of change are shown with ±2SE (shaded area).
Background data and supplementary analysis
Not relevant.
Recommendations for further development of the indicator
[bookmark: _Hlk54941452]In the short term this indicator is appropriately formulated. Over time, it is recommended that the indicator is strengthened with local population data to obtain better understanding of what drives population in the breeding areas vs. wintering/staging areas (for local trends see; Drent and Prop 2008, Layton-Matthews et al. 2019). The total population of barnacle goose has developed without signs of density limitations for the past 4-5 decades. Some old colonies in Svalbard, e.g. Ny-Ålesund, show a tendency toward stabilization of the number of nests, and a reduction in production (Drent et al. 1998, Loonen et al. 1998), whereas more recently established colonies (such as parts of Adventdalen) still appear to be growing rapidly (www.artsobservasjoner.no, www.lof.biz). Colonies near the coast, where geese nest on islands, are under increasing predation pressure from polar bears (Prop et al. 2015). To gain better understanding of distribution trends and geographic representativity, data from coastal census location (e.g. Ny-Ålesund and the Nordenskiöld Land coast; Prop et al. 2015, Layton-Matthews et al. 2019) may be included. Further to develop model-based prognoses of future population trends, it is necessary to undertake extensive population censuses at various low-elevation breeding sites in Svalbard, at regular intervals.

[bookmark: _Toc64282336]Indicator: Svalbard reindeer abundance
Ecosystem characteristic: Functionally important species and biophysical structures
Supplementary metadata
Not relevant.
Supplementary methods
Rates of change in all data sets are calculated with AR models as described in the general methods and are shown ±2SE. The most suitable model based on AIC is indicated on each individual diagram.
Plots of indicator values 
	

Figure A.9.1. Svalbard reindeer population sizes in Adventdalen (Ad), Reindalen (Re), and Brøggerhalvøya (Br). Note that abundance data from Reindalen is based on a three-year average. Rates of change are shown with ±2SE (shaded area). 
Background data and supplementary analysis
Not relevant.
Recommendations for further development of the indicator
There is a need to refine the indicator towards greater geographic representativity. The Governor of Svalbard conducts annual reindeer censuses from helicopter in several regions; these data could potentially be included to strengthen the spatial representativity of the indicator. However, questions have been raised concerning whether the method employed is sufficiently reliable to allow data comparison over time, and this issue must be assessed before the data can be considered for inclusion.

[bookmark: _Toc64282337]Indicator: Svalbard reindeer mortality rate
Ecosystem characteristic: Functionally important species and biophysical structures
Supplementary metadata
Not relevant.
Supplementary methods
Rates of change in all data sets are calculated with AR models as described in the general methods and are shown ±2SE. The most suitable model based on AIC is indicated on each individual diagram. 
Plots of indicator values 
	

Figure A.10.1. Svalbard reindeer mortality rate. The figure shows the mortality rate indicated by the number of carcasses found (top panel), and number of carcasses scaled to the previous year’s population size (bottom panel) in Adventdalen. The former estimate (the actual number of carcasses found) is most relevant as a measurement of carcasses as a food resource for the Arctic fox. The latter estimate (carcasses as a proportion of the population size) is more relevant as an index of mortality in the reindeer population. Rates of change are shown with ±2SE (shaded area).
Background data and supplementary analysis
Not relevant.
Recommendations for further development of the indicator
The mortality rate in the population of Svalbard reindeer is a function of climate (weather variability), population density, and age structure of the population (Hansen et al. 2013, Albon et al. 2017, Hansen et al. 2019). Models should be developed that assess the relative impact of these drivers on observed mortality trends. Such an approach would be strengthened by combining the data that have been used in this assessment with monitoring data on body mass, survival, and age of reindeer at the individual level, for example implemented in an integrated population model (Lee et al. 2015).

[bookmark: _Toc64282338]Indicator: Svalbard reindeer calf rate
Ecosystem characteristic: Functionally important species and biophysical structures
Supplementary metadata
Not relevant.
Supplementary methods
Rates of change in all data sets are calculated with AR models as described in the general methods and are shown ±2SE. The most suitable model based on AIC is indicated on each individual diagram. 
Plots of indicator values 
	

Figure A.11.1. Svalbard reindeer calf rate. The figure shows the number of calves per female (above 2 years) in Adventdalen during annual summer counts. Rates of change are shown with ±2SE (shaded area). 
Background data and supplementary analysis
Not relevant.
Recommendations for further development of the indicator
The production of calves in the Svalbard reindeer population is a function of climate, plant productivity, age structure in the population, and density of reindeer (Albon et al. 2017, Hansen et al. 2019). Models should be developed that assess the relative impact of these drivers on observed trends in calf production. Such an approach would be strengthened by combining the data that have been used in this assessment with monitoring data on the body mass, survival, and age of reindeer at the level of the individual animal, for example implemented in an integrated population model (Lee et al. 2015). 

[bookmark: _Hlk54954050][bookmark: _Toc64282339]Indicator: Arctic fox abundance
[bookmark: _Hlk54272199]Ecosystem characteristic: Functionally important species and biophysical structures
Supplementary metadata
Not relevant.
Supplementary methods
Rates of change in all data sets are calculated with AR models as described in the general methods and are shown ±2SE. The most suitable model based on AIC is indicated on each individual diagram. 
Plots of indicator values 
	

Figure A.12.1. The percentage of known Arctic fox dens with litter in Adventdalen/Sassendalen (solid line) from 1996-2019 and Brøggerhalvøya/Kongsfjorden (dashed line) from 1993-2019. Rates of change are shown with ±2SE (shaded area).
Background data and supplementary analysis
Not relevant.
Recommendations for further development of the indicator
In the short term this indicator is appropriately formulated.

[bookmark: _Toc64282340]Indicator: Bioclimatic subzones
[bookmark: _Hlk53574146]Ecosystem characteristic: Landscape-ecological patterns
Supplementary metadata
Not relevant.
Supplementary methods
This indicator is based on mean July temperature from the Sval-Imp dataset.
Plots of indicator values 
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Description automatically generated]Figure A.13.1: Map of the climatic delineation of each of the High Arctic bioclimatic subzones A, B, and C in the climatic reference period (1961-1990) and subsequent decades (1991-2000, 2001-2010,2011-2017). The subzones are defined based on average July temperature (subzone A =< 3°C, subzone B = 3-5°C, subzone C = 5-7°C, subzone D = 7-9°C; CAVM Team 2003).

	

Figure A.13.2. Total area residing within each of the High Arctic bioclimatic subzones (A, B and C), and Low-Arctic subzone (D) in the climatic reference period (1961-1990) and subsequent decades (1991-2000, 2001-2010, 2011-2017). The subzones are defined based on average July temperature (subzone A =< 3°C, subzone B = 3-5°C, subzone C = 5-7°C, subzone D = 7-9°C; CAVM Team 2003).
Background data and supplementary analysis
Not relevant.
Recommendations for further development of the indicator
The indicator is based on a dynamically down-scaled data set (Sval-imp, (Østby et al. 2017)) that employs a global reanalysis (ERA-interim/ERA-40) as initial and boundary conditions. A recent assessment of the gridded data set for Svalbard that has been in use (Vikhamar-Schuler et al. 2019) concludes that the gridded data underestimate measured temperature at many sites, and that this cold bias is particularly pronounced in summer. For this reason, all the temperature-based abiotic indicators in Svalbard are supplemented with weather station data from Svalbard Airport. However, the indicator Bioclimatic Subzones must be calculated as an indicator with regional coverage (e.g., based on gridded data) if it is to be of use. For the time being, we must therefore assume that the indicator overestimates the extent of the coldest subzone A and underestimates the extent of the warmest subzones D and C (possibly also B). Improving this will require development of either (i) atmospheric reanalysis models with less bias and/or (ii) post-processing techniques to correct for systematic deviations between model results and observations. The former alternative will probably be achieved in whole or in part through development of the Arctic regional reanalysis CARRA, which is currently being developed within Copernicus Climate Change Services. The other alternative will require a larger number of observations with greater representativity, that also cover valleys and areas at higher altitudes in Svalbard. The observational infrastructure currently being established by COAT and SIOS will contribute toward this goal.

[bookmark: _Toc64282341]Indicator: Wilderness areas
Ecosystem characteristic: Landscape-ecological patterns
Supplementary metadata
Not relevant.
Supplementary methods
Not relevant.
Plots of indicator values 
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Figure A.14.1. Map over areas which are located >1 km (light green) and > 5 km (dark green) from major infrastructures at the most recent status (to endnote: Norwegian Environmental Directorate 2020).
Table A.14.1. Change in wilderness areas over time for bioclimatic subzones A, B and C in Svalbard. The table shows the area (in km2 and % of total area), which are located > 1 km and > 5 km from major infrastructure for each status year 1990, 2015 and 2019. NB! There is no change in area between 2015 and 2019.
	Zone
	Tot. area (km2)
	Year
	Areas > 1 km from major infrastructure
	
	Areas > 5 km from major infrastructure
	

	
	
	
	Area (km2)
	% of total area
	Area (km2)
	% of total area

	A

	44 150
	1990
	44127
	99.9
	43677
	98.9

	
	
	2015
	44104
	99.9
	43535
	98.6

	
	
	2019
	44104
	99.9
	43535
	98.6

	B

	8591
	1990
	8542
	99.4
	8321
	96.9

	
	
	2015
	8541
	99.4
	8290
	96.5

	
	
	2019
	8541
	99.4
	8290
	96,5

	C

	8064
	1990
	7666
	95.1
	6596
	81.8

	
	
	2015
	7660
	95.0
	6460
	80.1

	
	
	2019
	7660
	95.0
	6460
	80.1


Background data and supplementary analysis
Not relevant.
Recommendations for further development of the indicator
The indicator quantifies the extent of areas > 1 km and > 5 km away from major infrastructure, such as roads, industrial installations, settlements. This indicator does not capture small technical installations such as cottages, minor power lines, or isolated masts without associated infrastructure. However, in assessments of ecosystem condition, minor perturbations can also be relevant, for instance if they negatively affect the movement patterns of animals. This requires ongoing consideration of the possibility of supplementing this indicator by including the presence of minor technical installations.

[bookmark: _Hlk54272224][bookmark: _Toc64282342]Indicator: Svalbard rock ptarmigan breeding abundance
[bookmark: _Hlk53574218]Ecosystem characteristic: Biological diversity
Supplementary metadata
Not relevant.
Supplementary methods
Rates of change in all data sets are calculated with AR models as described in the general methods and are shown ±2SE. The most suitable model based on AIC is indicated on each individual diagram. 
Plots of indicator values 
	

Figure A.15.1. Svalbard rock ptarmigan abundance from 2000-2019. The figure shows male Svalbard rock ptarmigan density using actual and predicted values of the number of males per km2 with 95 % confidence intervals (dark grey). Rates of change are shown with ±2SE (shaded area).
Background data and supplementary analysis
Not relevant.
Recommendations for further development of the indicator
In the short term this indicator is appropriately formulated.

[bookmark: _Toc64282343]Indicator: Days with extreme cold
[bookmark: _Hlk53574380]Ecosystem characteristic: Abiotic factors
Supplementary metadata
Not relevant.
Supplementary methods
This indicator is based on the Sval-Imp dataset, but NORA3 data are shown for comparison for the years where the two datasets overlap (1998-present; Fig. A.16.1 D-F). See General methods for details. 
Plots of indicator values 
	

Figure A.16.1. The number of days with extreme cold (daily mean temperature < -30°C) per year for the bioclimatic subzones A, B, C (Panel A-C and D-F, subsequently). (Panel A-C): The black regression line shows the rate of change (±2SE) if the indicator value is assumed constant during the climatic reference period (1961-1990). The blue regression line shows, as an illustration, the rate of change if the indicator value is NOT assumed to be constant during the climatic reference period, but equal to the predicted regression line for the period 1961-1990. Red dashed lines indicate the 2SD (shaded area) of the variation observed during the climatic reference period. (Panel D-F): A comparison of the mean number of days with extreme cold for subzone A, B, and C, based on Sval-Imp (black) and NORA3 (blue).
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Description automatically generated]
Figure A.16.2. The rates of change in average number of days with extreme cold (mean temperature < -30°C) from 1991-2019 after the climatic reference period of 1961-1990. The figures show the distribution of rates of change (°C/year) from a generalized linear model with number of days with extreme cold as response and year (1991-2017) as predictor. The model is run for each pixel in the three bioclimatic subzones A, B and C in Svalbard.
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Description automatically generated]
Figure A.16.3. Maps showing the spatial distribution of the mean number of days with extreme cold (daily mean temperature < - 30°C) in the reference period (1961-1990; left), and in subsequent years (1991-2019; right). 
Background data and supplementary analysis
Not relevant.
[bookmark: _Hlk62030198]Recommendations for further development of the indicator
The indicator is based on a dynamically down-scaled data set (Sval-imp, (Østby et al. 2017)) that employs a global reanalysis (ERA-interim/ERA-40) as initial and boundary conditions. Some of the temperature estimates show large deviations from observed temperatures. Thus, there is a need to develop either (i) atmospheric reanalysis models with less bias and/or (ii) post-processing techniques to correct for systematic deviations between model results and observations. The former alternative will probably be achieved in whole or in part through development of the Arctic regional reanalysis CARRA, which is currently being developed within Copernicus Climate Change Services. The other alternative will require a larger number of observations with greater representativity, that also cover valleys and areas at higher altitudes in Svalbard. The observational infrastructure currently being established by COAT and SIOS will contribute toward this goal.

[bookmark: _Toc64282344]Indicator: Winter melt days
Ecosystem characteristic: Abiotic factors
Supplementary metadata
Not relevant.
Supplementary methods
This indicator is based on the Sval-Imp dataset, but NORA3 data are shown for comparison for the years where the two datasets overlap (1998-present; Fig. A.17.1 D-F). See General methods for details. 
Plots of indicator values 
	

Figure A.17.1. The number of winter melt days (daily mean temperature > 0°C) per year for the bioclimatic subzones A, B, C (panel A-C and D-F, subsequently). (Panel A-C): The black regression line shows the rate of change (±2SE) if the indicator value is assumed constant during the climatic reference period (1961-1990). The blue regression line shows, as an illustration, the rate of change if the indicator value is NOT assumed to be constant during the climatic reference period, but equal to the predicted regression line for the period 1961-1990. Red dashed lines indicate the 2SD (shaded area) of the variation observed during the climatic reference period. (Panel D-F): A comparison of the mean number of winter melt days for subzone A, B, and C, based on Sval-Imp (black) and NORA3 (blue). Note that 2001 is missing in NORA3 due to technical issues.
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Description automatically generated]
Figure A.17.2. The rates of change in the number of winter melt days (daily mean temperature > 0°C) from 1991-2019 after the climatic reference period of 1961-1990. The figures show the distribution of rates of change (days/year) from a generalized linear model with the mean number of winter melt days as the response and year (1991-2019) as predictor. The model is run for each pixel in each of the three bioclimatic subzones A, B and C in Svalbard. 
 [image: Graphical user interface

Description automatically generated]
Figure A.17.3. Maps showing the spatial distribution of the average annual number of winter melt days (daily mean temperature > 0°C) during the climatic reference period (1961-1990; left), and the rates of change (days/year) from a generalized linear model during the subsequent years (1991-2019; right).
Background data and supplementary analysis
Not relevant.
Recommendations for further development of the indicator
[bookmark: _Hlk4523337][bookmark: _Hlk4578311]The indicator is based on a dynamically down-scaled data set (Sval-imp, (Østby et al. 2017)) that employs a global reanalysis (ERA-interim/ERA-40) as initial and boundary conditions. Some of the temperature estimates show large deviations from observed temperatures. Thus, there is a need to develop either (i) atmospheric reanalysis models with less bias and/or (ii) post-processing techniques to correct for systematic deviations between model results and observations. The former alternative will probably be achieved in whole or in part through development of the Arctic regional reanalysis CARRA, which is currently being developed within Copernicus Climate Change Services. The other alternative will require a larger number of observations with greater representativity, that also cover valleys and areas at higher altitudes in Svalbard. The observational infrastructure currently being established by COAT and SIOS will contribute toward this goal.


[bookmark: _Toc64282345]Indicator: Degree days
Ecosystem characteristic: Abiotic factors
Supplementary metadata
Not relevant.
Supplementary methods
This indicator is based on the Sval-Imp dataset, but NORA3 data are shown for comparison for the years where the two datasets overlap (1998-present; Fig. A.18.1 D-F). See General methods for details. 
Plots of indicator values 
	

[bookmark: _Hlk63428136]Figure A.18.1. The number of degree days (daily mean temperature > 5°C) per year for the bioclimatic subzones A, B, C (Panel A-C and D-F, subsequently). (Panel A-C): The black regression line shows the rate of change (±2SE) if the indicator value is assumed constant during the climatic reference period (1961-1990). The blue regression line shows, as an illustration, the rate of change if the indicator value is NOT assumed to be constant during the climatic reference period, but equal to the predicted regression line for the period 1961-1990. Red dashed lines indicate the 2SD (shaded area) of the variation observed during the climatic reference period. (Panel D-F): A comparison of the mean number of degree days for subzone A, B, and C, based on Sval-Imp (black) and NORA3 (blue). Note that 2001 is missing in NORA3 due to technical issues.
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Description automatically generated]
Figure A.18.2. The rates of change in the number of degree days (daily mean temperature > 5°C)  from 1991-2017 after the climatic reference period of 1961-1990. The figures show the distribution of rates of change (days/year) from a generalized linear model with the mean number of degree days as the response and year (1991-2019) as predictor. The model is run for each pixel in each of the three bioclimatic subzones A, B and C in Svalbard. 
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Description automatically generated]
Figure A.18.3. Maps showing the spatial distribution of the average annual number of degree days (daily mean temperature > 5°C) during the climatic reference period (1961-1990; left), and the rates of change (days/year) from a generalized linear model during the subsequent years (1991-2019; right). 
Background data and supplementary analysis
Not relevant.
Recommendations for further development of the indicator
The indicator is based on a dynamically down-scaled data set (Sval-imp, (Østby et al. 2017)) that employs a global reanalysis (ERA-interim/ERA-40) as initial and boundary conditions. Some of the temperature estimates show large deviations from observed temperatures. Thus, there is a need to develop either (i) atmospheric reanalysis models with less bias and/or (ii) post-processing techniques to correct for systematic deviations between model results and observations. The former alternative will probably be achieved in whole or in part through development of the Arctic regional reanalysis CARRA, which is currently being developed within Copernicus Climate Change Services. The other alternative will require a larger number of observations with greater representativity, that also cover valleys and areas at higher altitudes in Svalbard. The observational infrastructure currently being established by COAT and SIOS will contribute toward this goal.

[bookmark: _Toc64282346]Indicator: Growing degree days
Ecosystem characteristic: Abiotic factors
Supplementary metadata
Not relevant.
Supplementary methods
This indicator is based on the Sval-Imp dataset, but NORA3 data are shown for comparison for the years where the two datasets overlap (1998-present; Fig. A.19.1 D-F). See General methods for details. 
Plots of indicator values 
	

Figure A.19.1. Growing degree days (the sum of daily mean temperatures > 5°C, May-Oct) per year for the bioclimatic subzones A, B, C (Panel A-C and D-F, subsequently). (Panel A-C): The black regression line shows the rate of change (±2SE) if the indicator value is assumed constant during the climatic reference period (1961-1990). The blue regression line shows, as an illustration, the rate of change if the indicator value is NOT assumed to be constant during the climatic reference period, but equal to the predicted regression line for the period 1961-1990. Red dashed lines indicate the 2SD (shaded area) of the variation observed during the climatic reference period. (Panel D-F): A comparison of growing degree days for subzone A, B, and C, based on Sval-Imp (black) and NORA3 (blue). Note that 2001 is missing in NORA3 due to technical issues.
[image: ]
Figure A.19.2. The rates of change in growing degree days (the sum of daily mean temperatures > 5°C, May-Oct) from 1991-2017 after the climatic reference period of 1961-1990. The figures show the distribution of rates of change (days/year) from a generalized linear model with the mean number of growing degree days as the response and year (1991-2019) as predictor. The model is run for each pixel in each of the three bioclimatic subzones A, B and C in Svalbard. 
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Description automatically generated]
Figure A.19.3. Maps showing the spatial distribution of growing degree days (the sum of daily mean temperatures > 5°C, May-Oct) during the climatic reference period (1961-1990; left), and the rates of change from a generalized linear model during the subsequent years (1991-2017; right).
Background data and supplementary analysis
Not relevant.
[bookmark: _Hlk62807560]Recommendations for further development of the indicator
The indicator is based on a dynamically down-scaled data set (Sval-imp, (Østby et al. 2017)) that employs a global reanalysis (ERA-interim/ERA-40) as initial and boundary conditions. Some of the temperature estimates show large deviations from observed temperatures. Thus, there is a need to develop either (i) atmospheric reanalysis models with less bias and/or (ii) post-processing techniques to correct for systematic deviations between model results and observations. The former alternative will probably be achieved in whole or in part through development of the Arctic regional reanalysis CARRA, which is currently being developed within Copernicus Climate Change Services. The other alternative will require a larger number of observations with greater representativity, that also cover valleys and areas at higher altitudes in Svalbard. The observational infrastructure currently being established by COAT and SIOS will contribute toward this goal

[bookmark: _Toc64282347]Indicator: Annual mean temperature
Ecosystem characteristic: Abiotic factors
Supplementary metadata
Not relevant.
Supplementary methods
This indicator is based on the Sval-Imp dataset, but NORA3 data are shown for comparison for the years where the two datasets overlap (1998-present; Fig. A.21.1 D-F). See General methods for details. 
Plots of indicator values 
	

Figure A.20.1. The annual mean temperature per year for the bioclimatic subzones A, B, C (Panel A-C and D-F, subsequently). (Panel A-C): The black regression line shows the rate of change (±2SE) if the indicator value is assumed constant during the climatic reference period (1961-1990). The blue regression line shows, as an illustration, the rate of change if the indicator value is NOT assumed to be constant during the climatic reference period, but equal to the predicted regression line for the period 1961-1990. Red dashed lines indicate the 2SD (shaded area) of the variation observed during the climatic reference period. (Panel D-F): A comparison of annual mean temperature for subzone A, B, and C, based on Sval-Imp (black) and NORA3 (blue). Note that 2001 is missing in NORA3 due to technical issues.
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Figure A.20.2. The rates of change in mean annual temperature from 1991-2019 after the climatic reference period of 1961-1990. The figures show the distribution of rates of change (days/year) from a linear model with the mean number of growing degree days as the response and year (1991-2019) as predictor. The model is run for each pixel in each of the three bioclimatic subzones A, B and C in Svalbard. 
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Description automatically generated]
Figure A.20.3. Maps showing the spatial distribution of the annual mean temperature during the climatic reference period (1961-1990; left), and the rates of change (days/year) from a linear model during the subsequent years (1991-2017; right). 
Background data and supplementary analysis
Not relevant.
Recommendations for further development of the indicator
The indicator is based on a dynamically down-scaled data set (Sval-imp, (Østby et al. 2017)) that employs a global reanalysis (ERA-interim/ERA-40) as initial and boundary conditions. Some of the temperature estimates show large deviations from observed temperatures. Thus, there is a need to develop either (i) atmospheric reanalysis models with less bias and/or (ii) post-processing techniques to correct for systematic deviations between model results and observations. The former alternative will probably be achieved in whole or in part through development of the Arctic regional reanalysis CARRA, which is currently being developed within Copernicus Climate Change Services. The other alternative will require a larger number of observations with greater representativity, that also cover valleys and areas at higher altitudes in Svalbard. The observational infrastructure currently being established by COAT and SIOS will contribute toward this goal.

[bookmark: _Toc64282348]Indicator: July temperature
Ecosystem characteristic: Abiotic factors
Supplementary metadata
Not relevant.
Supplementary methods
This indicator is based on the Sval-Imp dataset, but NORA3 data are shown for comparison for the years where the two datasets overlap (1998-present; Fig. A.21.1 D-F). See General methods for details. 
Plots of indicator values 
	

Figure A.21.1. The annual mean July temperature per year for the bioclimatic subzones A, B, C (Panel A-C and D-F, subsequently). (Panel A-C): The black regression line shows the rate of change (±2SE) if the indicator value is assumed constant during the climatic reference period (1961-1990). The blue regression line shows, as an illustration, the rate of change if the indicator value is NOT assumed to be constant during the climatic reference period, but equal to the predicted regression line for the period 1961-1990. Red dashed lines indicate the 2SD (shaded area) of the variation observed during the climatic reference period. (Panel D-F): A comparison of July mean temperature for subzone A, B, and C, based on Sval-Imp (black) and NORA3 (blue). Note that 2001 is missing in NORA3 due to technical issues.
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Figure A.21.2. The rate of change in average July temperature from 1991-2019 after the climatic reference period (1961-1990). The figures show the distribution of rates of change (°C/year) from a linear model with mean July temperature as the response and year (1991-2017) as predictor. The model is run for each pixel in the climatic subzones A, B and C in Svalbard. 
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Description automatically generated] 
Figure A.21.3. Map showing the spatial distribution of mean July temperature in the reference period (1961-1990, left), and the rates of change (°C/year) from a linear model during the subsequent years (1991-2017). 
Background data and supplementary analysis
Not relevant.
[bookmark: _Hlk61869183]Recommendations for further development of the indicator
The indicator is based on a dynamically down-scaled data set (Sval-imp, (Østby et al. 2017)) that employs a global reanalysis (ERA-interim/ERA-40) as initial and boundary conditions. Some of the temperature estimates show large deviations from observed temperatures. Thus, there is a need to develop either (i) atmospheric reanalysis models with less bias and/or (ii) post-processing techniques to correct for systematic deviations between model results and observations. The former alternative will probably be achieved in whole or in part through development of the Arctic regional reanalysis CARRA, which is currently being developed within Copernicus Climate Change Services. The other alternative will require a larger number of observations with greater representativity, that also cover valleys and areas at higher altitudes in Svalbard. The observational infrastructure currently being established by COAT and SIOS will contribute toward this goal.

[bookmark: _Toc64282349]Indicator: Annual precipitation
Ecosystem characteristic: Abiotic factors
Supplementary metadata
Not relevant
Supplementary methods
This indicator is based on the Sval-Imp dataset, but NORA3 data are shown for comparison for the years where the two datasets overlap (1998-present; Fig. A.22.1 D-F). See General methods for details. 
Plots of indicator values
	

Figure A.22.1. The mean precipitation per year for the bioclimatic subzones A, B, C (Panel A-C and D-F, subsequently). (Panel A-C): The black regression line shows the rate of change (±2SE) if the indicator value is assumed constant during the climatic reference period (1961-1990, Sval-Imp dataset). The blue regression line shows, as an illustration, the rate of change if the indicator value is NOT assumed to be constant during the climatic reference period, but equal to the predicted regression line for the period 1961-1990. Red dashed lines indicate the 2SD (shaded area) of the variation observed during the climatic reference period. (Panel D-F): The mean precipitation per year for the bioclimatic subzones A, B, C in the time period when NORA3 (blue) and Sval-Imp (black) overlaps (1998-2017). Note that 2001 is missing in NORA3 due to technical issues. 
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Figure A.22.2. Rate of change in annual precipitation from 1991-2017 after the climatic reference period of1961-1990. The figures show the distribution of rates of change (mm/year) from a linear model with average annual precipitation as a response variable and year (1991-2017) as a predictor variable for every pixel of the three bioclimatic subzones in Svalbard. 
 [image: ]
Figure A.22.3. Map showing the spatial distribution of mean annual precipitation in the reference period (1961-1990; left), and rate of change (mm/year) from a linear model after the climatic reference period (1991-2017: right). 
Background data and supplementary analysis
Not relevant.
Recommendations for further development of the indicator
The indicator is based on a dynamically down-scaled data set (Sval-imp, (Østby et al. 2017)) that employs a global reanalysis (ERA-interim/ERA-40) as initial and boundary conditions. Some of the estimates show large deviations from observations. Thus, there is a need to develop either (i) atmospheric reanalysis models with less bias and/or (ii) post-processing techniques to correct for systematic deviations between model results and observations. The former alternative will probably be achieved in whole or in part through development of the Arctic regional reanalysis CARRA, which is currently being developed within Copernicus Climate Change Services. The other alternative will require a larger number of observations with greater representativity, that also cover valleys and areas at higher altitudes in Svalbard. The observational infrastructure currently being established by COAT and SIOS will contribute toward this goal.

[bookmark: _Toc64282350]Indicator: Permafrost
Ecosystem characteristic: Abiotic factors
Supplementary metadata
Not relevant.
Supplementary methods
The data series shown in Fig. A.23.1 give daily temperatures measured at selected depths in the top 15 metres of the ground. When calculating the thickness of the active layer ( = 0-degree isotherm), data from the top 2 metres are used, measured at 0.2 m, 0.4 m, 0.8 m, 1.2 m, 1.6 m and 2.0 m. The thickness of the active layer is calculated daily through linear interpolation between the two depths where the temperature is just above and just below 0. The maximal thickness of the active layer corresponds to the maximal thickness observed in each year. For details, see Isaksen et al. (2001). Rates of change in all data sets are calculated with AR models as described in the general methods and are shown ±2SE. The most suitable model based on AIC is indicated on each individual diagram. 
Plots of indicator values 
		


Figure A.23.1. Permafrost temperature and active layer depth over time in a borehole in Janssonhaugen, Adventdalen. Top panel: Annual maximum active layer depth (left) and daily permafrost temperatures at 15 m (green), 10 m (red) and 5 meters (grey) depth (right). Bottom panel: Annual permafrost temperature on September 1st at 5 m (left) and 15 meters depth (right). Rates of change are shown ±2SE (shaded area).
Background data and supplementary analysis
Not relevant.
Recommendations for further development of the indicator
The data used for the indicator so far are from Janssonhaugen, for which there is a long series from a deep borehole of about 100 m. Over time it is recommended that the indicator is supplemented with data from several shorter series from shallow boreholes in Svalbard (Christiansen et al. 2010).

[bookmark: _Toc64282351]Indicator: Snow cover duration
Ecosystem characteristic: Abiotic factors
Supplementary metadata
Not relevant.
Supplementary methods
This indicator is based on the Sval-Imp dataset which is discontinued after 2017. At present the dataset which is used as a substitute for temperature indicators (NORA3) has only been developed back to 1998 for precipitation and snow cover. For illustration, we show mean snow cover duration based on both dataset for the overlapping period (Fig. A.24.1 D-F). See General methods for details.
Plots of indicator values 
	

Figure A.24.1. The number of days with snow cover per year for the bioclimatic subzones A, B, C (Panel A-C and D-F, subsequently). (Panel A-C): The black regression line shows the rate of change (±2SE) if the indicator value is assumed constant during the climatic reference period (1961-1990, Sval-Imp dataset). The blue regression line shows, as an illustration, the rate of change if the indicator value is NOT assumed to be constant during the climatic reference period, but equal to the predicted regression line for the period 1961-1990. Red dashed lines indicate the 2SD (shaded area) of the variation observed during the climatic reference period. (Panel D-F): The number of days with snow cover per year for the bioclimatic subzones A, B, C in the time period when NORA3 (blue) and Sval-Imp (black) overlaps (1998-2017). Note that 2001 is missing in NORA3 due to technical issues. 

 [image: ]
Figure A.24.2. The rates of change in snow cover duration from 1991-2017 after the climatic refence period of 1960-1991. The figures show the distribution of rates of change (days/year) from a generalized linear model with the mean snow cover duration as the response and year (1991-2017) as predictor. The model is run for each pixel in the three bioclimatic subzones A, B and C.
 
[image: ]
Figure A.24.3. Map showing the spatial distribution of the average annual snow cover duration during the climatic reference period (1961-1990; left), and the rates of change (days/year) from a generalized linear model during the subsequent years (1991-2016; right).
Background data and supplementary analysis
Not relevant.
Recommendations for further development of the indicator
The indicator is based on a dynamically down-scaled data set (Sval-imp, (Østby et al. 2017)) that employs a global reanalysis (ERA-interim/ERA-40) as initial and boundary conditions. Thus there is a need to develop either (i) atmospheric reanalysis models with less bias and/or (ii) post-processing techniques to correct for systematic deviations between model results and observations and/or (iii) dedicated snow models such as SnowModel (Liston and Elder 2006), which use high-resolution reanalysis data as initial values. The first alternative will probably be achieved in whole or in part through development of the Arctic regional reanalysis CARRA, which is currently being developed within Copernicus Climate Change Services. The second alternative will require a larger number of observations with greater representativity, that also cover valleys and areas at higher altitudes in Svalbard. The observational infrastructure currently being established by COAT and SIOS will contribute toward this goal. The third alternative can make use of both CARRA and better observation coverage.
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