Review of current knowledge about life under sea ice and consequences for this in an ice landscape in change

Philipp Assmy A Norwegian Polar Institute N-9296 Tromsø, Norway

The tree of life

Hunt et al. (in prep.)

XX

Sea ice biota

- Microbes
- Ice algae
- Meiofauna
- Macrofauna
- Polar cod
- Zooplankton (ice-associated)

Simplified Arctic marine food web

Arctic primary production

Ice algae

Model: 21.3 Tg C yr⁻¹

Multi-observational: 9-73 Tg C yr⁻¹

Model: 413±88 Tg C yr⁻¹ Satellite derived: 419±33 Tg C yr⁻¹

Temporal extension of the future seasonal ice zone

Wassmann and Reigstad 2011

Biomass

Controlling factors of Arctic algal biomass and growth

Light

Snow cover Ice cover Melt pond cover Clouds

Nutrients

Stratification

Winds

Upwelling

Riverine input

Grazing

Timing Food quality Nursery habitat

Incoming radiation

Changes in snow precipitation and accumulation on sea ice

Snow cover: the single most important predictor of ice-algal biomass

Seasonal development of ice-algal chlorophyll concentrations at Resolute Bay, Canadian Arctic under low (blue), medium (green) and high (red) snow cover.

Leu et al. 2015

Ice-algal time-series around the Arctic

No significant correlation between bloom start, peak, and end dates and latitude, ice freeze-up and ice break-up dates.

Leu et al. 2015 Prog. Oceanogr.

Atlantic Water inflow

- Atlantic Water inflow is the largest source of heat in the Arctic Ocean.

Atlantic Waterfound between 200-800 m depth.

- Atlantic Water inflow has been warming since the late 70s.

=> What are the consequences for Arctic sea ice algae?

Ice-algal standing stocks for different Arctic areas

Geographic area n = number of studies	Chl <i>a</i> standing stock (mg m ⁻²)
Pacific sector n = 5	0.2 - 304
Canadian Arctic Archipelago n = 20	0.01 - 711
Baffin and Hudson Bay n = 8	0.1 - 800
Barents and Kara Seas n = 6	0.01 – 48
Greenland Sea and Fram Strait n = 5	0.1 – 3.3
Central Arctic Ocean n = 3	<0.01 - 14

Leu et al. 2015

Depth integrated in situ net primary productivity (NPP)

Fernandez-Mendez et al. 2015

Melosira arctica drives cryo-pelagic-benthic coupling in the central Arctic Ocean

Boetius et al. Science 2013

High overall biomass along the Eurasian slope is related to contribution of allochthonous (advected) zooplankton, in particular, to advection of the Atlantic copepod *Calanus finmarchicus*

Biomass,

K. Kosobokova, Shirshov Institute of Ocanology, Moscow

High proportion of "expatriates" in the Arctic Ocean

Seasonality in the Arctic Ocean

Due to earlier sea-ice retreat the amount of open wáter days per year has increased since 1998.

In the marginal ice zone, north of Svalbard the rate of change is very fast (10 open water days per year)

Light and productivity

Continued increases in Arctic Primary Production

Open water receives more light and is therefore more productive if nutrients are available.

Phytoplankton production is **increasing** due to an increase in open water.

BUT..what is going on below the ice??

"Enlightening" the Arctic Ocean: Solar heat input into the Arctic Ocean through sea ice in August 2011. This map only considers fluxes through sea ice, excluding fluxes through open water

Nicolaus et al. 2012 GRL

Massive under ice bloom in the Chuckchi Sea

Laney&Sosik 2014

Fragilariopsis sp.

Spring bloom progression in the MIZ (a) and future scenario with thinner ice (b).

Barber et al. 2015

The limiting role of nutrients

Solar heat input into the Arctic Ocean through sea ice in August 2011. This map only considers fluxes through sea ice, excluding fluxes through open water

Nicolaus et al. 2012

Smallest Algae Thrive As the Arctic Ocean Freshens

William K. W. Li,¹* Fiona A. McLaughlin,² Connie Lovejoy,³ Eddy C. Carmack²

Increased freshening and warming of the surface ocean might amplify the permanent halocline and favour a regenerating community dominated by small phytoplankton.

25% decrease in winter water silicate over the last 20 years

Subpolar gyre

Rey 2012

Regime shift in the Atlantic sector of the Arctic?

Increase in Phaeocystis in Fram Strait

(Nöthig et al. 2015)

Decrease in biogenic silica (diatom) export in Fram Strait

(Lalande et al. 2013)

Kongsfjorden 1996-2015

Dalpadado et al. 2016

Temperature Kongsfjorden vs. WSC July-August

Dalpadado et al. 2016

"Atlantification" of Kongsfjorden

Hydrographic data NPI

Summer chlorophyll time-series 2006-2014

Chlorophyll data NPI

Taxonomic composition of protist plankton in summer in Kongsfjorden (Kb3)

Summer post-bloom scenario in Kongsfjorden and Fram Strait

Plankton and nutrient data NPI

Top-down regulation by *Calanus* **copepods**

Plankton data NPI

Arctic vs Atlantic Calanus species in Kongsfjorden

Based on abundance

Arctic: *C. glacialis* (& *C. hyperboreus*) Atlantic: *C. finmarchicus*

Based on biomass

Spatial and temporal trends in krill and amphipods in Kongsfjorden

Dalpadado et al. 2016

Amphipod and krill feeders

Dalpadado et al. 2016

IMR-data

Rjipfjorden 2006-2014

Taxonomic composition of protist plankton in summer in Rijpfjorden (R3)

Cross shelf transects north of Svalbard

ICE 2011 81°N 80°N 79°N 78°N 77°N 28°E 12° 16° 20° 24°

August/September

April/May

Seasonal patterns in chlorophyll concentrations

Post-bloom subsurface Chl a max

ICE 2011

Spring bloom

Chlorophyll data NPI

Biomass of *Calanus* species ICE 2010 + ICE 2011

Zooplankton data NPI

Early phytoplankton spring bloom north of Svalbard

Phytoplankton data NPI

Regional differences in ice algal biomass and community composition

Floating ice-algal aggregates below melting Arctic sea ice

Thank you for your attention!

